

Brewing India Pale Ales Matt Cole

BA Style Guideline

- Medium-high to intense hop bitterness, flavor, and aroma
- Medium to high alcohol content
- American hop character
- High mineral content water = crisp & dry
- Pale gold to deep copper color
- Medium maltiness, medium body
- Fruity ester flavors/aromas moderate to strong

Water

- Carbon filters to strip chlorine
- High sulfate water (calcium and magnesium)
 - More intense bitter character
 - Better clarity
 - Stability
- Chloride
 - Mellows flavor, adds fullness and roundness
 - Clarity
 - Lowers pH
- Water to grain ratio

Malt

o "Soul of the Beer"

- Provides body, sweetness, color, and the starches to be converted to fermentable sugars
- Large pale malt base (85-97%)
- Specialty malt (3-15%)
 - Limited use in IPA brewing
- Crystal malt (10-60 °L)
 - Nothing more than 60 °L is normally used
- Dark Malts (.5-1%)

Brewing Sugars

• Creates drier and lighter colored beer

• Sucrose

- Disaccharide composed of glucose and fructose
- More commonly used in British IPA
- Powdered dextrose sugar (5-10%)
 - Glucose derived from enzymatically hydrolyzed cornstarch
 - Added to beginning of boil

Mashing

- Gentle mash mixing
 - Course crush
 - Preserve husks
- Alpha and beta amylase enzymes
 - Beta amylase: 130-140 °F
 - Alpha amylase: 150-160 °F
 - Two mash rest temperatures
- Time
- Temperature
- Mash off

Mash Hopping vs. First Wort Hopping

• Mash Hopping

- Higher pH in the mash creates non-volatile compounds in the wort
- Thought to lend a more rounded bitterness
- Whole hops help in lautering
- First-Wort Hopping
 - Volatile compounds bind to malt components
 - Hops have longer contact time

Hop Products

- Only female plants flower
- Hop varieties
 - Low alpha 1.5-5% : Hallertau, Saaz, and Goldings
 - High alpha 17-18% : Warrior, Summit, Apollo
- Hop products
 - Whole
 - Pellets
 - Extracts
 - Becoming more accepted by craft brewers
 - Better products are available than in the past
 - Reduces kettle solids and increases efficiency

Chemical Composition of Hops

• Alpha Acids

- Humulone 40-80%
- Cohumulone 14-50%
- Adhumulone 5-15%
- Cohumulone harshness
 - Can start at levels over 30%

Iso-Alpha Acids

- Alpha acids must be isomerized through boiling to dissolve in wort
- Isomerization factors
 - Temperature
 - Length of boil
 - Vigor
 - Pressure of boil
 - Kettle design
 - o Altitude
- Iso-alpha acids contribute significantly to foam retention

Hop Utilization % Formula

• Hop utilization = <u>iso-alpha acids in wort x 100</u> alpha acids added to the brew

- Wort analysis helps calculate hop utilization
- Hop addition timing
- IBUs drop as much as 33% during fermentation
- Balancing hop flavor/aroma with utilization
- Over-hopping

Factors Affecting Hop Utilization in Kettle Boil

Change	Typical hop utilization, impact on bitterness obtained
Hop cones, 12 P wort, 90 min boil	20-30% utilization
Hop pellets	Increase, 25-35% utilization
Hop extract	Increase, 30-40% utilization
Increase boil time	Increase
Increase wort pH	Increase
Decrease gravity	Increase
Increase hopping rate	Decrease. Bitterness will increase, but not linearly.

IPA: Brewing Techniques, Mitch Steele

Essential Hop Oils

• Contribute hop aroma and flavor

- Myrcene
 - Provides important late hop flavor and aroma
 - Most abundant oil (30-60%)
 - Evaporates quickly
- Humulene
- Caryophyllene
- Hop oils are volatile
 - Lost during the boil

Hop Recipe Design Considerations

- Hop variety
- Desired hop flavor and aroma
- Bitterness level
- Kettle hop utilization
- Impact of late hop additions on flavor and aroma
- Dry hopping

Single Additions vs. Multiple Additions

- Breweries hop at both extremes of the spectrum
 - Single addition
 - Multiple additions
 - Continual additions
- Practicality can influence decision

Hopping in the Kettle, Hopback, & Whirlpool

- Kettle Hopping
 - Bittering, flavor, and aroma
- Hopback Hopping
 - Significant hop flavor and aroma
 - Use high quality aromatic hops
- Whirlpool Hopping
 - A significant amount of bitterness can be obtained
 - Isomerization of alpha acids occurs at temperatures above 185 °F
 - Quickly removing wort preserves volatile oils

Fermentation

- Yeast
 - Strain selection
 - Temperature
 - Nutrients
 - O2 levels
 - 9-15 ppm dissolved oxygen at time of yeast pitching
- Pitching Rates
 - 16 million cells per 16° plato
 - 20 million cells per 20° plato
- Fermentation Hopping

Fermentation Byproducts

• Diacetyl

- Buttery flavor with slick mouthfeel
- Diacetyl reduction is increased when:
 - Beer pH is lowered
 - Diacetyl rest raise temps
 - High concentration of yeast in suspension
 - Starting with healthy yeast

Fermentation Byproducts

Acetaldehyde

- Green apple flavor
- Created during excessive post-fermentation yeast contact
 - Lack of nutrients stresses yeast
- Reduced with warmer temps and racking beer off yeast
- Fusel Alcohols
 - Produced by excessive yeast growth
 - Reduce sugar additions, aeration and fermentation temps

Fermentation Byproducts

• Ester Formation

- Higher pitch rate = lower growth = more esters
- Higher gravity wort = more esters
- Tall fermenters = more pressure = less esters
- Decreased aeration = lower growth = more esters

Dry Hopping

- o Time
 - 5-15 days
- Temperature
 - Warm
- Contact
 - Rouse with CO2
- Hop varieties
- Dry Hopping Methods
 - Top port
 - Slurry recirculation
 - Hop cannon

Filtration

- Strips
 - Color
 - Body
 - Mouthfeel
 - Bitterness
 - Aroma
 - Stability (shelf life)
- Fining
 - Gelatin and silica

Yeast Is Good

• Drink Fresh!

17

3/1

INDIA PALE ALE