Brewing Water

S.N.O.B – Aug 2011

Steve Alexander HDB.ORG Brewing Techniques Zymurgy MCAB 4 speaker

Copley, Ohio

Brewing Water Chem is Intricate

- The point of this presentation is to discuss concepts
- There is limited coverage of the detailed calculations
- Web links and references cover the arcane calculation in detail with nice spreadsheets & java scripts.

Water is simple

- $H_2O two Hydrogen one Oxygen$
- Molecular weight (2*1 + 16 =) 18 <u>Dalton</u>
- 18 grams, ~0.6 ounce (~1 ice cube) is one Mole

Water has one trick, dissociation

- $H_2O => H^+$ and OH^-
- $H^+ + H_2O => H_2O_2^+$
- splits into a hydrogen or <u>hydronium</u> and a <u>hydroxyl</u>
- Temperature dependent !
- A liter of 25C(77F) neutral water has 10⁻⁷ Mol of hydronium (pH = 7). At mash temp 65C(155F) there are 2.5 times more hydronium (pH= ~6.6).

But things dissolve in water, Water is a 'strong' polar solvent

lons we may find in tap water

- Calcium
- Magnesium
- Sodium
- Potassium
- Iron, Nickel, Copper
- Nitrogen (nitrate) ?

- Carbonate (tbd)
- Sulfate, Sulfite, Sulfide
- Silicate
- Chloride, Chlorine
- Fluoride
- Phosphate ?
- ... more ...

Basic concepts ...

- pH a measure of the concentration of free hydrogen ions (acids). H⁺ or hydronium H₂O₂⁺
- Alkalinity a measure of how much buffering (carbonates) exist in water. It's tested by measuring the amount of acid needed to drive pH to 4.3.
- Hardness the concentration of Calcium and Magnesium ions in water

Why we care about water ?

- Water ions impact ...
 - Mash conversion
 - Yeast performance
 - Beer stability & haze
 - Beer flavor
- Water pH impacts ...
 - Mash conversion, Hops extraction, Yeast performance
- Water infections impact flavor !

Why we care about solutes/ions and acids ?

• MASH

- Small amounts of Calcium needed for alphaamylase activity (<u>enzyme co-factor</u>).
- Enzyme activity is pH dependent. (5.1-5.5 @ mash temp or 5.5-5.9 @ room temp)
- High pH extracts bad phenolic flavors from malt.
- High pH causes stuck sparge (mushy grist)
- Water is used up in hydrolysis. 10gal of 12P wort uses ~220gm (1 cup) of water for conversion !

Enzyme shape impact activity. co-factors & pH

Why we care about solutes/ions and acids ?

Fermentation

- Yeast need water (duh!)
- Most nutrition is from malt, but water may contain "fertilizer" N-P-K (nitrogen, phosphorus, potassium)
- Yeast manage wort/beer pH, but prefer a starting point < 6.
- Some minor ions enhance fermentation in TINY quantity (copper, zinc)
- Some minor ions harm yeast (zinc, arsenic)
- Too many ions reduce water activity (Ac).

Is there fertilizer in your water ?

- Common agricultural fertilizer is labeled N-P-K (nitrate, phosphate, potassium salts)
- Yeast need these too.
- These are usually sequestered in plants and animals, and rare in water sources.
- If present they may come from runoff, composting plants, algae kills, or excrement
- Has bad implications for your water source.

Are there 'bugs' in your water ?

- Bacteria and fungi are common in all natural water sources. Brewers mostly care about lactobacilli, acetobacteria and wild yeasts.
- Municipal water supplies add <u>hypochlorite</u> (CIO⁻) ions (bleach) to water to oxidize(burn) the bugs. Also chloramine CINH₂⁻. Note <u>chloride</u> (CI-) ions differ
- Upside suppresses infection
- Downside chlorite is reactive and the products are flavorful/bad. (medicinal & phenolic flavor)

Why we care about solutes/ions and acids ?

Hopping

- pH impacts hop extraction.
- Too high (>6) means more beta-lupulones, coarse bitterness.
- Too low (<4.5) means poor isomerization low bitterness.
- Sulfate (SO₄⁻⁻) ions enhance hop bitterness

Why we care about solutes/ions and acids ?

Beer Stability & Haze

- Sulfite (SO₃⁻⁻) are excellent antioxidants
 - Reduced mash color
 - Reduces beer oxidation
 - Produces sulfate when oxidized.
- Iron and Copper (Fe⁺⁺, Cu⁺⁺) cause oxidation & staling & haze !
 - The only way to manage iron are 'green clay' filtration or oxidation & sedimentation.
 - FDA wants copper out of tuns.

Why some well water smells of rotten eggs

- Iron is the cause !
- Some bacteria convert Iron and sulfate into rust + <u>hydrogen sulfide</u> for energy !
- Chlorinating the well kills the bacteria, stops rotten egg stink.
- Iron is still a big brewing problem find another water source.

Why we care about solutes/ions and acids ?

Beer Flavor

- Yeast control beer pH,so acidity in water isn't very important beer pH. (The tongue tastes alkalinity !)
- A large number of ions have an impact on final beer flavor and mouthfeel, so difficult, complex to analyze.

The easy cases

- We assume your water is potable
 - Iron, Tin, Silicate, Manganese, Chlorite just plain bad, <0.01 ppm
 - Zinc needed at ~0.1ppm, acceptable at < 0.5ppm
 - Sodium(Na) smooth flavor enhancing to 150ppm, but adds harshness with sulfate. Go easy on Na.
 - Chloride(CI) adds fullness & sweetness to 250ppm
 - Sulfate(SO4⁻⁻) adds crisp edge and enhances bitterness (up to 350ppm in big IPAs)

Where do we stand in these ?

Cleveland	Copley	range	comment
1 ppm Chlorine	0 ppm	<20ppb	Must remove, filter, boil
10.7 ppm Na	5.1 ppm Na	0-150 ppm	Increase desirable.
18 ppm Cl	16 ppm Cl	0-250 ppm	Increase desirable
36 ppm sulfate	30 ppm sulfate	50-100 normal 100-350 IPA+	Ok, but increase for bitter beers

The hard cases

- Calcium & Magnesium (Ca, Mg) = hardness
 - Ca 50-150 ppm
 - Mg 10-30 ppm
- Carbonate (mostly bicarb, HCO₃⁻) = alkalinity
 - 0-50 ppm bicarb for light color beers
 - 50-150 ppm bicarb for dark beers
 - Mash pH is the issue !!!

Where do we stand in these ?

Cleveland	Copley	range	comment
33 ppm Ca	63 ppm Ca	0-150 ppm	good
7.1 ppm Mg	18 ppm Mg	10-30 ppm	good
120ppm Alk ~145ppm bicarb	96 ppm Alk, 116 pm bicarb	0-50 ppm pale 50-150 dark	<u>Only dark beers w/o</u> <u>treatment</u>

The Big Picture

Common Soluble Minerals

- calcite, aragonite, limestone, marble CaCO₃
- dolomite Ca.Mg(CO₃)₂
- gypsum $CaSO_4 (H_2O)_2$
- anhydrite CaSO₄
- epsomite $Mg.SO_4.(H_2O)_7$
- halite NaCl
- Others ... Iron, Fluoride, Potassium various metals

So what is Alkalinity ?

- Answers the question how much acid (hydronium ions) does it take to drive the pH to 4.3 ?
- Expressed "as CaCO₃" [very misleading!]
- CaCO₃ => Ca⁺⁺ + CO₃⁻⁻ [almost insoluble]
- CO_3^{--} + H⁺ => HCO_3^{-} [bicarbonate, soluble]
- HCO_3^- + H^+ => CO_2^- + H_2^-O [effervesces]

The moment of Steve's awakening

Example Calculation

• Cleveland Water:

Alkalinity (Alk) = 120 ppm (??) as-CaCO₃ 120ppm CaCo3 = 1.18mMol each carbonate requires 2 hydrogens to ... Acid required = 2.36 mMol of H+, 2.36 meq.

To acidify the water requires $10^{-4.5} - 10^{-7} = 0.031$ meq ... totally **negligible**.

But this is misleading

- Cleveland water has pH=7.3, so it's effectively all bicarbonate !
- Our water has ~2.36 mM of bicarb $[HCO_3^-]$
- NOT 1.18 mM of carbonate [CO₃⁻⁻]

This chart implies two solutions to alkalinity

Ways to correct alkalinity

- Boil and add oxygen (how?)
 - Converts 2 bicarbs to 1 CO₂ + H₂O and 1 CaCO₃
 - Precipitate chalk and decant, reduces Ca&Mg
 - Difficult, incomplete, expensive, time consuming
- Add base (pickling lime) to >pH 11
 - Chalk precipitates overnight, decant
 - Acidify (tiny addition)
 - Slow but cheap, reduces Ca&Mg

More ways to correct alkalinity

- Add acid to $pH = \sim 6$, and stir to release CO2
 - Quick & easy, requires food grade acid

Reverse Osmosis filter

- Removes ~95% of all ions
- So 120ppm Alk becomes ~6ppm

Dilute with distilled or RO water

- To get from 120ppm to 50ppm Alk requires
 - 42% CLV water + 58% Distilled

Mash pH is the goal !

- Pure water + pale malt gives pH ~5.7 @68F GOOD!
- With 20% crystal malt gives pH ~5.2 @68F (too low)
- 100% caramel, roast gives pH 4.0-4.8 @68F (very low)

• Darker malts are acidic !

Mash pH and alkalinty

- To produce "chalk" requires Ca or Mg
- Our water is deficient
 - 33ppm Ca = 0.83 mM
 - 7.1ppm Mg = 0.30 mM
 - 1.13 mM of cations but 2.36mM of bicarb !
 - We need another 1.23mM of Ca
 - add gypsum $CaSO_4.2(H_2O)$
 - or add Ca(OH)₂

Phytin in malt reduces alkalinity !

- Kolbach determined phytin precipitated hardness(Ca & Mg) and produces acid.
- 50.5 ppm of Alk (as CaCO3) is counteracted when phytin reacts with 70ppm of Ca or 88ppm of Mg
- If CLV water has 120ppm of Alkalinity, then we can remove the alkalinity in the mash by with 166ppm Ca or 210ppm Mg.

Phytin (cont)

- This means adding ~133ppm of Ca
 - Add 0.53g/L gypsum (adds ~300ppm of sulfate)
 - Add 0.45g/L calcium chloride (adds ~230ppm Cl)
 DOESN'T WORK WELL
- If Alkalinity is really 120ppm as CaCO₃ then use acid additions.

References

John Palmer's "How to Brew" online

http://howtobrew.com/sitemap.html

- http://www.brewersfriend.com/water-chemistry/
- HBD.org archives

http://hbd.org/archives.shtml

http://hbd.org/hbd/archive/2648.html

http://brewery.org/brewery/Library.html#Water

Homebrew Talk Wiki

http://www.homebrewtalk.com/wiki/index.php